首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40814篇
  免费   3357篇
  国内免费   3079篇
  2024年   14篇
  2023年   502篇
  2022年   640篇
  2021年   2000篇
  2020年   1464篇
  2019年   1844篇
  2018年   1750篇
  2017年   1265篇
  2016年   1854篇
  2015年   2490篇
  2014年   3043篇
  2013年   3269篇
  2012年   3904篇
  2011年   3372篇
  2010年   2090篇
  2009年   1808篇
  2008年   2074篇
  2007年   1818篇
  2006年   1537篇
  2005年   1357篇
  2004年   1155篇
  2003年   1045篇
  2002年   909篇
  2001年   751篇
  2000年   695篇
  1999年   688篇
  1998年   436篇
  1997年   445篇
  1996年   427篇
  1995年   384篇
  1994年   349篇
  1993年   230篇
  1992年   340篇
  1991年   258篇
  1990年   225篇
  1989年   184篇
  1988年   124篇
  1987年   124篇
  1986年   81篇
  1985年   96篇
  1984年   61篇
  1983年   53篇
  1982年   42篇
  1981年   26篇
  1980年   11篇
  1979年   10篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
51.
52.
A male sterile line was isolated in marigold (Tagetes erecta L.) and cytological analysis determined this to be a novel genic male sterility trait (Tems). Through the use of amplified fragment length polymorphisms (AFLPs) and bulked segregant analysis (BSA), tightly linked markers of Tems were identified with a view towards a map-based cloning strategy. It was found that spontaneous homeotic conversion of floral organs was the underlying cause of the male sterility in this marigold line. Thus, petals of male sterile plants resembled sepal-like structures and the stamens were partially converted to styles, although without the full characteristics or function of the true style organs. We have constructed a fine marker-based map for the Tems gene. This is intended to provide a tool for marker assisted selection (MAS) strategies in hybrid breeding and map-based cloning strategies for the male sterility locus. We discuss the significance of this spontaneously derived genic male sterility trait relating to the homeotic conversion of floral organs in marigold.  相似文献   
53.
Earlier studies have suggested that indoleamine 2,3-dioxygenase (IDO) has a wide tissue distribution in mammals. However, detailed information on its cellular localization and also the levels of expression in various tissues is still scarce. In the present study, we sought to determine the cellular localization of IDO and also to quantify the level of its expression in various mouse tissues by using the branched DNA signal amplification assay, Western blotting, and immunohistochemical staining. The highest levels of constitutive IDO expression were found to be selectively present in the caput of epididymis, except for its initial segment. IDO expression was also detected inside the luminal compartment and even in the stereocilia within this region. In the prostate, high levels of IDO were selectively expressed in the capsular cells. In addition, high levels of IDO expression were also selectively detected in certain types of cells in the placenta, spleen, thymus, lung, and digestive tract. Notably, the morphological features of most of the positively stained cells in these organs closely resembled those of antigen-presenting cells. Based on the tissue distribution and cellular localization characteristics of IDO, it is hypothesized that its expression may serve two main functions: one is to deplete tryptophan in an enclosed microenvironment (such as in the epididymal duct lumen) to prevent bacterial or viral infection, and the other is to produce bioactive tryptophan catabolites that would serve to suppress T-cell–mediated immune responses against self-antigens, fetal antigens, or allogeneic antigens, in different situations. (J Histochem Cytochem 58:17–28, 2010)  相似文献   
54.
Pseudorabies, a herpesvirus infection, is mainly controlled by using attenuated live vaccines. In this study, the effect of ginseng stem and leaf saponins (GSLS) in combination with selenium (Se; in the form of sodium selenite) on vaccination against attenuated pseudorabies virus (aPrV) was evaluated. It was found that GSLS and Se have an adjuvant effect and that a combination of GSLS and Se stimulates significantly enhanced immune responses than does GSLS or Se alone. Following oral administration of GSLS, mice immunized with an attenuated PrV vaccine diluted in Se‐containing physiological saline solution (PSS) provoked a significantly stronger gB‐specific serum antibodies response (IgG, IgG1 and IgG2a), enhanced lymphocyte proliferation and cytolytic activity of NK cells, along with higher production of cytokines (IFN‐γ, IL‐12, IL‐5 and IL‐10) by splenocytes. Notably, the combination of GSLS and Se conferred a much higher resistance to fPrV challenge after immunization of the mice with aPrV vaccine. This study offers convincing experimental evidence that an injection of Se with oral GSLS is a promising adjuvant combination that improves the efficacy of vaccination against PrV and deserves further study regarding improvement of responses to other animal vaccines.  相似文献   
55.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
56.
Western flower thrip, Frankliniella occidentalis (Pergande), is among the most economically important agricultural pests globally, attacking a wide range of vegetable and horticultural crops. In addition to causing extensive crop damage, the species is notorious for vectoring destructive plant viruses, mainly belonging to the genera Orthotospovirus, Ilarvirus, Alphacarmovirus and Machlomovirus. Once infected by orthotospoviruses, thrips can remain virulent throughout their lifespan and continue transmitting viruses to host plants when and wherever they feed. These irruptive viral outbreaks in crops will permanently disrupt functional integrated pest management systems, and typically require a remedial treatment involving insecticides, contributing to further development of insecticide resistance. To mitigate against this continuing cycle, the most effective management is early and comprehensive surveillance of the pest species and recognition of plant viruses in the field. This review provides information on the pest status of F. occidentalis, discusses the current global status of the viruses vectored by this thrip species, examines the mechanisms involved in transmitting virus‐induced diseases by thrips, and reviews different management strategies, highlighting the potential management tactics developed for various cropping systems. The early surveillance and the utilization of potential methods for control of both F. occidentalis and viruses are proposed.  相似文献   
57.
58.
Abstract This paper deals in detail with the morphology of the larva of Neopsylla specialis specialis Jordan, 1932. It may be distinguished from other larvae of 5 species or subspecies of Neopsylla by two fine setae lying on outside of each posterior long seta on the ventral plates of the first to third thoracic segments, ratio of the length and width of the egg burster, number and shape of mandibular teeth, number and length of the setae in the anterior and posterior row on dorsal side of head, and number of the setae of anal comb and the strut setae. The sense organs on the 10th tergite are discussed.  相似文献   
59.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   
60.
Breast cancer is the second leading cause of cancer death in women. Despite improvement in treatment over the past few decades, there is an urgent need for development of targeted therapies. miR-155 (microRNA-155) is frequently up-regulated in breast cancer. In this study, we demonstrate the critical role of miR-155 in regulation of cell survival and chemosensitivity through down-regulation of FOXO3a in breast cancer. Ectopic expression of miR-155 induces cell survival and chemoresistance to multiple agents, whereas knockdown of miR-155 renders cells to apoptosis and enhances chemosensitivity. Further, we identified FOXO3a as a direct target of miR-155. Sustained overexpression of miR-155 resulted in repression of FOXO3a protein without changing mRNA levels, and knockdown of miR-155 increases FOXO3a. Introduction of FOXO3a cDNA lacking the 3′-untranslated region abrogates miR-155-induced cell survival and chemoresistance. Finally, inverse correlation between miR-155 and FOXO3a levels were observed in a panel of breast cancer cell lines and tumors. In conclusion, our study reveals a molecular link between miR-155 and FOXO3a and presents evidence that miR-155 is a critical therapeutic target in breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号